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In the modern operating room (OR), traditional surgical mask, frequent air exchanges, and architectural
barriers are viewed as effective in reducing airborne microbial populations. Intraoperative sampling of
airborne particulates is rarely performed in the OR because of technical difficulties associated with sam-
pling methodologies and a common belief that airborne contamination is infrequently associated with
surgical site infections (SSIs). Recent studies suggest that viable airborne particulates are readily dis-
seminated throughout the OR, placing patients at risk for postoperative SSI. In 2017, virtually all surgical
disciplines are engaged in the implantation of selective biomedical devices, and these implants have been
documented to be at high risk for intraoperative contamination. Approximately 1.2 million arthroplas-
ties are performed annually in the United States, and that number is expected to increase to 3.8 million
by the year 2030. The incidence of periprosthetic joint infection is perceived to be low (<2.5%); however,
the personal and fiscal morbidity is significant. Although the pharmaceutic and computer industries enforce
stringent air quality standards on their manufacturing processes, there is currently no U.S. standard for
acceptable air quality within the OR environment. This review documents the contribution of air con-
tamination to the etiology of periprosthetic joint infection, and evidence for selective innovative strategies
to reduce the risk of intraoperative microbial aerosols.
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Inc. All rights reserved.

The general estimate for the cost of a periprosthetic joint infec-
tion (PJI) in the United States is approximately $100,000.1 In 2017,
Parisi et al, seeking to provide a more accurate assessment of the
actual cost of a PJI, included in their estimate not only the cost to
the health care system but personal liabilities such as time away
from productive endeavors including work which results in lost
wages. The authors found by using a 1-way sensitivity analysis that
the cost of a single PJI was in the range of $389,307-$474,004.2 In
addition, multiple studies have documented that PJI is associated
with a mortality rate between 2% and 7%.3,4 It has been suggested
that in selective patients the 5-year survival rate with a PJI is worse
than with many cancers.4 Although approximately 1.2 million ar-
throplasties are performed in the United States each year, this

number is anticipated to increase in part because of the aging of
the U.S. population, exceeding 3.8 million annually by the year 2030.
Using current metrics, the projected (total) cost burden associ-
ated with PJI in the United States will approach $1.6 billion by the
year 2020.5 The following review will focus on the potential impact
of microbial aerosols on the etiology of device-related infections,
specifically PJI.

Data sources

A search to identify published peer literature on microbial aerosol
contamination of the intraoperative environment was undertak-
en. Different search strategies identified studies and reports from
PubMed, MEDLINE, Cochrane Database of Systematic Reviews, and
INAHTA. The literature search involved a broad free text search with
no restriction to language. Although abstracts were not consid-
ered in the search, technical engineering reports were considered
in the development of this manuscript.
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Evidence supporting the association between airborne microbes and
surgical site infection

Over the last 20 years several peer-reviewed publications have pre-
sented evidence that airborne microbial populations can play a role
in the etiology of surgical site infection (SSI), especially in proce-
dures involving implantable biomedical devices, such as prosthetic
joints.

Of course, traditional epidemiologic dogma suggests that risk
strata of possible pathogens begins with the patient’s microbiome,
followed by skill of the perioperative team and sterility of surgical
instruments, and finally, the environment of care in the operating
room (OR), including air. However, contamination of an im-
planted device often presents as a stealth event, where the host
immune system is unaware that contamination has occurred because
the native immunologic response is primarily directed against the
device itself and not the presence of any residual contamination.
Once an organism adheres to the surface of a device it may actu-
ally downregulate its metabolism, multiplying at a slower rate,
which further shields the host from noticing the presence of a
microbial pathogen.6 This process has been well documented in
late-onset vascular graft infections, where the impact of bacterial
contamination may not present with symptoms until weeks or
even months postimplantation. By this period of time, the micro-
bial pathogen is often enmeshed within a biofilm, having achieved
a critical density, which eventually elicits a host response to the
device-associated infection7,8 Therefore, surgical procedures involving
an implant are at significant risk after intraoperative contamina-
tion from even a minimal microbial inoculum.9,10 The traditional
presentation of a postoperative infection in a clean surgical wound
requires a microbial burden approaching 105 colony forming units
(CFU), whereas in the presence of a foreign body the contaminating
burden which results in infection is significantly reduced (101-102)
CFU.6,11

The importance of airborne transmission as a mechanism for in-
traoperative microbial contamination and infection is a considerable
source of debate and controversy.12-16 The convective air flow within
the OR can spread airborne particles, posing a potential risk for post-
operative infection. These airborne particles include dust, textile
fibers, skin scales, and respiratory aerosols, loaded with viable mi-
croorganisms (including Staphylococcus aureus) having been released
from the surgical team members and patient into the surrounding
air of the OR. These particles have been shown to settle onto sur-
faces including the surgical wound and instruments.17-23 A study
supporting this assertion documented the recovery of the same mo-
lecular strains of coagulase-negative staphylococci and S aureus
recovered from OR air samples, originating from nasopharyngeal
shedding by members of the surgical team during the same surgi-
cal cases.24 The shedding of bacteria into the air by the OR team
members can be enhanced by conditions including dermatitis and
upper respiratory infections.15,25,26 A study published in 1984 in the
Journal of Bone and Joint Surgery documented that conversations
within the OR during total joint arthroplasty enhanced microbial
contamination of the OR air.27 These findings have validated a more
recent study, which documented that the barrier properties of the
traditional surgical mask rapid decreases due in part to the accu-
mulation of moisture within the fabric of the mask leading to
nasopharyngeal venting along the edges of the mask.24 Under-
scored the impact of contaminated air on postoperative surgical
infection are the recent global reports of intraoperative wound con-
tamination by Mycobacterium chimaera.28 These infections, which
continue to be reported, have been found to be the result of air con-
tamination associated with a commonly used heater cooler unit in
cardiothoracic surgical procedures, despite use of ultraclean air
ventilation.28

Current OR standards for reduction of microbial aerosol

Studies conducted in the mid-1960s by Goddard initiated the di-
alogue regarding total air changes needed in ORs to minimize
postoperative infection rates. Goddard’s experiments suggested a
quantifiable relationship between air change rates and bacterial count,
noting that increasing air changes per hour from 20 to 25 reduced
bacteria forming colony (cfu) units from 3.8 to 2.5 cfu/ft3 of room air.29

Current clinical guidelines including those from the Centers for Disease
Control and Prevention and the Association of periOperative Regis-
tered Nurses place significant focus on reducing environmental
contamination in the OR via cleaning and disinfection of hard and
soft environmental surfaces, equipment, and skin and hands of pa-
tients and health care workers. Air contamination and air cleaning
strategies are addressed from the perspective of limiting door open-
ings (OR traffic), efforts to limit the number of individual in the room
during a case, and adhering to specific engineering controls for air
pressure (positive), air recirculation (15-20 air changes per hour), tem-
perature, humidity, and and High Efficiency Particulate Arrestance
(HEPA) filtration.30,31 However, these guidelines do not address spe-
cific criteria for the quantitative reduction of viable microbial aerosols
in OR air. Guidelines from ASHRAE have established air displace-
ment standards and operational parameters for the air handling units
(Table 1).32 Not surprisingly, even with these required engineering
and traffic control standards, there are numerous reports and studies
linking airborne contamination directly to device-related proce-
dures and specifically, orthopedic SSIs.33-36

There is currently no U.S. standard for air quality for the OR en-
vironment that is akin to the standards for maximum particle size
limits (particles per cubic meter of air) in pharmacy clean rooms.37

Within the international arena there are numerous quantitative pa-
rameters for air particle or bacteria levels in the OR. A technical paper
from health care professionals in Australia proposes that OR air
quality should meet European Union (EU) ISO 7 classification
(Table 2).38 In an era of biomedical device-related surgery, an EU
ISO 7 classification would potentially represent an excessive number
of both viable and nonviable particles that may in the course of the
surgical procedure settle within the surgical wound. The EU is in
the process of developing new air quality standards for the hospi-
tal environment, including ORs, which will include 3 classes based
on patient risk. Specific limitations will be set, by class, on the al-
lowable number of bacterial CFU within selective health care
environments as indicated in Figure 1.39 For example, the particle
count or bacterial CFU limits in a compounding pharmacy clean room
would be different from an OR where there are many more people,
equipment, and movement within the environment. However, the
goal of measuring air quality in the OR should include a more com-
prehensive approach, especially with the availability of real-time
laser particle counting technology that can differentiate between
viable and nonviable particulates, which could be beneficial in de-
veloping a mitigating risk strategy to prevent airborne device
contamination during implantation. Under the EU–World Health Or-
ganization plan, the permissible levels of microbial contamination
in general ORs (class II) would be <50 CFU/m3, whereas orthope-
dic, cardiac, and transplant ORs would have permissible limits of
<10 CFU/m3 (class I). This strategy is more in line with what we

Table 1
Additional operating room design considerations per ASHRAE 170-200832

• Mean diffuser velocity 127-178 L/m2

• Diffuser concentration to provide an airflow pattern over the patient and
surgical team

• Diffuser array shall extend a minimum of 305 mm beyond the table footprint
• >30% of the diffuser array area used for nondiffuser uses such as lights
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perceive to be risk stratification, recognizing that device implan-
tation and immune status have a probable impact on development
of a postoperative infection.

Currently, air sampling protocols are not standardized, and un-
fortunately it is difficult to compare results from studies which use
different methodologies to assess microbial air quality. Tradition-
ally, microbial air sampling in the OR (and health care in general)
has involved either passive (settle agar plates) or active (cascade
impactors or impingers) sampling strategies. However, it has been
documented that different active air sampling devices show high
variability, often giving different results in the same place at the same
time.40 Within the last 10 years the introduction of laser real-time
bacterial enumeration has allowed investigators to differentiate
between viable and nonviable airborne particulates. Although this
technology is readily available, few health care institutions have in-
corporated real-time laser microbial enumeration into routine OR

air sampling. There are multiple reasons for this omission, including
(1) capital cost of the equipment; (2) lack of a standardized testing
strategy; and (3) unfortunately, failure to recognized airborne mi-
crobial populations as playing a role in postoperative infections.

Although innovative microbial enumeration technology is pro-
viding a real-time analysis of the potential risk of intraoperative
contamination, one cannot dismiss the relative value of tradition-
al microbial culture methods. Dalstrom et al documented using a
standard culture technique a time-dependent contamination of
opened sterile OR trays, and found that “Culture positivity corre-
lated directly with the duration of open exposure of the uncovered
operating-room trays.” The authors suggested that covering the
surgical trays with a sterile towel significantly reduced the con-
tamination risk.41 This study has in part led to the recent practice
of preparing a separate wound closure tray that is only opened when
the surgeon is ready to close the case, thereby minimizing the risk
of fascial and subcuticular wound contamination at closure.

Technologies to reduce the risk of viable particulate contamination
within the OR

There are 4 selective processes for reducing air contamination:
dilution, filtration, pressurization, and disinfection. Current SSI pre-
vention guidelines strategies for reducing air contamination in the
OR include dilution (15-20 air changes per hour), filtration (HEPA)
and pressurization (positive), and the practice of limiting door open-
ings and encouraging a reduction in OR traffic during surgical cases.
In the practice of orthopedic surgery, multiple strategies have been
used or proposed to reduce the risk of intraoperative contamina-
tion of the wound, including the use of surgical helmet systems
(SHSs), ultraviolet (UV) plus heating, ventilation, and air condition-
ing (HVAC) systems, and ultraclean ventilation.

Surgical helmet system

Although SHSs are frequently used in joint replacement surgery,
their role in preventing SSI remains controversial. The recent Centers
for Disease Control and Prevention guidelines for prevention of SSI
sought to resolve this dispute but were unable to reach a conclu-
sion regarding the utility of such systems in reducing SSIs and hence
could not make any recommendations on their routine use.42 In a
recent systematic review, the older Charnley-type body exhaust suits
which are under negative pressure were reported to be effective in
reducing deep infection rates and contamination in arthroplasty.43

However, in contrast with the body exhaust suits, modern SHS
designs were not shown to reduce contamination or deep infec-
tion during arthroplasty.43 McGovern et al published a controlled
experiment designed to investigate the effect of different surgical
helmet or gown systems on counts of airborne particles measuring

Table 2
USP 797 low- to medium-risk pharmacy clean rooms guidelines for microbial contamination of room air38

ISO 14644-1 clean room standards

Class

Maximum particles per cubic meter
Federal Standard
209E Equivalent

≥0.1 μm ≥0.2 μm ≥0.3 μm ≥0.5 μm ≥1 μm ≥5 μm

ISO 1 10 2.37 1.02 0.35 .083 .0029
ISO 2 100 23.7 10.2 3.5 0.83 .029
ISO 3 1,000 237 102 35 8.3 0.29 Class 1
ISO 4 10,000 2,370 1,020 352 83 2.9 Class 10
ISO 5 100,000 23,700 10,020 3,520 832 29 Class 100
ISO 6 1.0 × 106 237,000 100,200 35,200 8,320 293 Class 1,000
ISO 7 1.0 × 107 2.37 × 106 1,020,000 352,000 83,200 2,930 Class 10,000
ISO 8 1.0 × 108 2.37 × 107 1.02 × 107 3,520,000 832,000 29,300 Class 100,000
ISO 9 1.0 × 109 2.37 × 108 1.02 × 108 35,200,000 8,320,000 293,000 Room air

Fig 1. Propose EU-WHO standards for contamination of hospital room air: class I,
<10 CFU; class II, <50 CFU; and class III, <200 CFU. Hospital OR fall within class I
standards. 39 CFU, colony forming units; ED, emergency department; EU, Europe-
an Union; Preop, preoperative; Pt., patient; OR, operating room pediatric intensive
care unit (PICU); surgical intensive care unit (SICU); medical intensive care unit (MICU);
cardiac intensive care unit (CICU) and labor and delivery (L&D). WHO, World Health
Organization.
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≥0.3 μm, using a handheld particle counter. There was a signifi-
cant reduction in particle counts with the hood/gown system (hood
over helmet combined with an integral gown) versus gown alone
(P = .007) and hood plus gown (P = .037). It was further deter-
mined that the fans in the helmets do not increase contaminants
by blowing particles from the head area. Overall, a significant re-
duction in surgeon-originated contaminants was seen with the toga
compared with both the hood and gown separate ensemble and
gowns alone.44 In another study, operating team members wore SHSs
consisting of disposable gowns plus either a nonsterile squire-
type disposable hood and triple laminar face mask, a sterilized
helmet aspirator system, or no head cover. Both types of head covers
resulted in low and comparable air contamination (means, 8 and
4 CFU/m3, respectively) and surface wound contamination (means,
69 and 126 CFU/m2/h, respectively). Omission of head covering re-
sulted in a 3- to 5-fold increase in microbial air contamination, and
an increase in the bacterial sedimentation rate in the wound area
of 60-fold (P ≤ .0001).45 A study by Fraser et al in 2015 concluded
that particle contamination occurs at the gown-glove interface in
most commonly used positive-pressure SHSs, noting that this is
something all orthopedic surgeons should be aware of as a poten-
tial source of intraoperative contamination. Although future studies
are needed to clarify the link between particle contamination through
this route and PJIs, the study concluded that surgeons should con-
sider using gowning systems that minimize the migration of fomites
through the gown-glove interface.46 A recent study hypothesized
that activation of the airflow in an SHS after complete gowning would
lead to decreased contamination of the surgical environment. By
using a fluorescent particle model, the maximal particle spread from
a filtered-exhaust helmet and contamination of the surgical envi-
ronment based on timing of airflow activation through simulated
surgical procedures were evaluated. Helmet airflow analysis re-
vealed particle spread >5 ft in all trials. Activation before gowning
resulted in a significantly greater contamination in the control group
compared with the experimental group (P = .014). The study con-
clusion was surgical gowning should be completed before activation
of the airflow system.47 In a recent study published in 2016, the
authors found that the current positive-pressure SHS was found to
be a potential risk for intraoperative contamination. Mechanisti-
cally, this was likely because of the buildup of positive pressure
within the suit, which could aerosolize viable particulates via the
unsealed areas around the surgeon’s cuffs.48 The finding of these
various studies would suggest that the benefits of an SHS could very
well be mandated by individual product choice, technique, and
operator.

UV plus HVAC systems

UV disinfection as an adjunct to manual environmental clean-
ing is used increasingly in health care facilities to improve the quality
of surface disinfection. Similarly, UV is being used with increasing
frequency as an adjunct to standard engineering controls in ORs to
clean the air to reduce the risk of microbial aerosols and thereby
reduce the risk of infection. A wide spectrums of UV HVAC systems
are currently available on the market.

Egg crate upper-room UV germicidal irradiation
This system was recently developed as an alternative to con-

ventional upper-room UV germicidal irradiation using conventional
louvered fixtures. Efficacy has been confirmed via experimental
testing where airborne Bacillus atrophaeus spores were inacti-
vated with the system.49 However, no studies documenting the
impact of this system to reduce risk of SSI rates are available for
review.

HEPA and UV air recirculation system
The efficacy of this innovative system has been recently evalu-

ated for reducing airborne microorganism present within a plastic
surgery OR at an outpatient surgery center. The reactor system of
the HEPA and UV air recirculation system uses C-band UV light
focused on a reaction chamber filled with clear cylindrical silicate
quartz crystals to decrease bacteria counts in the air. In the study,
an air sampling impactor and agar media plates were placed in mul-
tiple locations in the OR and used to measure the number of CFU
per cubic meter of bacteria in the air before and after use of the
system. From the cultured samples obtained, there was a 53.4%
(P = .0163) reduction in CFU count overall.50 Further studies are war-
ranted to assess the clinical benefit of this innovative technology.

UV-C, continuous, air purification system
Combining UV germicidal irradiation chamber and air circulat-

ing fans with an overhead ceiling light, this system uses UV-C light
and filtration to draw in and treat environmental air. The system
is designed to work constantly, providing 4 changes per hour for
an 8 × 10 × 10 ft3 dimensional room. In a non–peer-reviewed 2016
study reported in McKnight’s publication, a long-term care facili-
ty using this technology reported that in patient rooms without the
system, infections rates per 1,000 patient days averaged 17.5. In
rooms where the system was activated, infections per 1,000 patient
days averaged 12.5, a statistically significant outcome. Additional-
ly, the rooms with the system in place exhibited a 51% reduction
in airborne bacteria.51 However, future peer-reviewed published
studies are warranted to assess the benefit of this technology as a
feasible strategy for reducing the risk of intraoperative contami-
nation and infection.

Ultraclean ventilation systems combining laminar airflow and high-
efficiency particulate air filters

Ultraclean ventilation systems are predominantly used in clean
prosthetic implant surgery. Several studies have demonstrated de-
creased air bacterial contamination with laminar airflow (LAF) using
sedimentation agar plates placed in key areas throughout the OR.
It is generally assumed that a reduction in airborne contamina-
tion with this system will translate into reduced orthopedic
infections. However, apart from the original Lidwell Medical Re-
search Council study, there are few clinical studies that validate the
effectiveness of LAF systems.52 However, one expert has rightly sug-
gested that the “absence of a high-level of evidence from randomized
trials is not proof of ineffectiveness.”53 Other investigators have con-
cluded there is no benefit, and one report actually suggested an
increased infection risk using laminar flow technology.54-57 Two
recent systematic reviews and meta-analyses failed to show an ad-
vantage with LAF compared with conventional turbulent ventilation
in reducing the risk of SSIs in total hip and knee arthroplasties.58,59

The authors of both of these studies concluded that LAF should not
be regarded as a preventive measure to reduce the risk of infec-
tion and that it should not be installed in new ORs. The World Health
Organization tackled this issue in their recent guidelines for pre-
venting SSI. Based on the available scientific literature, the World
Health Organization panels suggested “. . .that laminar airflow ven-
tilation systems should not be used to reduce the risk of SSI for
patients undergoing total arthroplasty surgery (conditional recom-
mendation, low to very low quality of evidence).”60 The likely source
of this controversial issue resides in the difficulty of acquiring a true
air barrier within the OR with the myriad of light, monitors, and
personnel who pass repeatedly in and out of the LAF.39 Although
it appears that LAF may not be needed, the role of positive venti-
lation systems and the efforts to reduce the number of particulate
matters in the OR cannot be questioned.
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CONCLUSIONS

Microbial contamination of air in the OR is an underappreci-
ated factor in the etiology of PJIs and infection after implantation
of other selective biomedical devices. Current engineering con-
trols and practice requirements for limiting traffic during cases have
thus far resulted in failure to reduce the risk of microbial aerosols
or intraoperative contamination of implantable devices during
arthroplasty surgery. Furthermore, there is a general lack of under-
standing or even misunderstanding of how (and why) airborne
microbial populations pose a significant risk to patients undergo-
ing device-implant surgery. Future consideration should be given
to institutional investment in innovative air purification technolo-
gies as an adjunctive strategy to enhance current engineering
controls, in an effort to reduce the risk of PJIs. Future consider-
ation should be given to ongoing research into OR air quality by
testing the feasibility of HVAC-implemented designs according to
ASHRAE 170 using simulated surgical procedures and equipment
that mirrors activity during a typical orthopedic procedure such as
arthroplasty. Traditional infection control strategies such as limit-
ing OR traffic has had a marginal impact in reducing intraoperative
microbial aerosols or the risk of implant-associated infections.

It is truly confounding that rigorous air quality standards are
applied to the drug and computer chip manufacturing industries,
whereas the same rigor has not been embraced to provide a safe
and effective OR environment for surgical patients. To meet the future
challenge of reducing the risk of PJIs and other implant-related in-
fections, updated quantitative air quality standards for the OR (eg,
those in development for the World Health Organization) are re-
quired that are based on state-of-the-art real-time microbial aerosol
testing. If we are to have a measurable impact on reducing patient
morbidity and mortality that is often associated with PJI, all sur-
gical stakeholders must continue to evaluate and embrace innovative
operative techniques along with evidence-based adjunctive risk re-
duction strategies, improving patient outcomes and preserving
valuable health care resources.
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